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A flow state consisting of two oppositely traveling waves �TWs� with oscillating amplitudes has been found
in the counter-rotating Taylor-Couette system by full numerical simulations. This structure bifurcates out of
axially standing waves that are nonlinear superpositions of left- and right-handed spiral vortex waves with
equal time-independent amplitudes. Beyond a critical driving, the two spiral TW modes start to oscillate in
counterphase due to a Hopf bifurcation. The trigger for this bifurcation is provided by a nonlinearly excited
mode of different symmetry than the spiral TWs. A three-mode coupled amplitude equation model is presented
that captures this bifurcation scenario. The mode-coupling between two symmetry degenerate critical modes
and a nonlinearly excited one that is contained in the model can be expected to occur in other structure-forming
systems as well.
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Many nonlinear structure-forming systems that are driven
out of equilibrium show a transition to traveling waves
�TWs� as a result of an oscillatory instability �1�. In the pres-
ence of spatial inversion symmetry in one or more directions
also a standing wave �SW� solution bifurcates which is a
nonlinear superposition of the two symmetry degenerated,
oppositely propagating TWs with equal amplitudes.

SWs and TWs have a common onset as a result of a
primary Hopf bifurcation. But at onset only one of them is
stable �2,3�. Furthermore, there are mixed patterns with non-
equal amplitude combinations of the degenerated TWs that
arise, e.g., via secondary bifurcations at larger driving. The
variety with temporally constant, nonequal TW amplitudes
can provide a stability transferring connection between TWs
that, e.g., are stable at onset and SWs that become stable
later on �4�.

The variety in which the TW amplitudes oscillate in time
is the subject of this paper. This solution bifurcates out of the
SW via a Hopf bifurcation. To be concrete we investigate
wave structures consisting of spiral vortices in the annular
gap between counter-rotating concentric cylinders of the
Taylor-Couette system �5,6�. To that end we have performed
numerical simulations of the Navier-Stokes equations �NSE�
to reveal the bifurcation properties as well as the spatiotem-
poral structure of the oscillating mixed wave states. In addi-
tion, we provide coupled three-mode amplitude equations
that capture this bifurcation to explain the underlying mode-
coupling mechanism. We are not aware that these states have
been reported so far in the Taylor-Couette literature. Further-
more, one can expect that the mode-coupling mechanism be-
tween two symmetry degenerate critical modes and the non-
linearly excited one that is described by our coupled
amplitude equations and that drives the oscillatory instability
is operating in other pattern-forming systems as well.

The waves are realized by left-handed spiral vortex �L-
SPI� and right-handed spiral vortex �R-SPI� structures that
are mirror images of each other. The azimuthal advection by
the basic circular Couette flow �CCF� rotates both like rigid

objects into the same direction as the inner cylinder �7�. As a
result of the enforced rotation the phases of L-SPI and R-SPI
travel axially into opposite directions. This system offers an
easy experimental and numerical access to forward bifurcat-
ing TWs and SWs that are called ribbons �RIBs� �8–11� in
the Taylor-Couette literature. Being a nonlinear superposition
of L-SPI and R-SPI the RIB structure also rotates azimuth-
ally, however, such that its oscillations in axial direction
form a SW.

Here we elucidate how such stable SWs lose stability to
an oscillating state via a Hopf bifurcation. Therein, the inter-
action with another nonlinearly excited, nontraveling mode
induces the TW constituents of the SW, i.e., the L-SPI and
the R-SPI to oscillate in counterphase around a common
mean. These oscillating mixed wave states that we call os-
cillating cross spirals �O-CR-SPI� are quite robust. Thus,
they should easily be observable in experiments.

All these spiral structures are axially and azimuthally pe-
riodic. We have focused our simulations on patterns with
axial wavelength �=1.3 measured in units of the gap width
and azimuthal wave number M =2. The numerical solutions
of the NSE were obtained for a system with radius ratio
�=1 /2 by methods described in �7�.

Control- and order parameters. The rotational velocities
of the inner and outer cylinders are measured by the respec-
tive Reynolds numbers R1 and R2. We fix R1=240 �12,13�
and we introduce the reduced distance �= �R2−R2

0� / �R2
0�

from the common onset of SPI and RIB flow at R2
0=−605.5

as control parameter. We characterize the spatiotemporal
properties of the vortex waves using the Fourier decomposi-
tion

f�r,�,z,t� = �
m,n

fm,n�r,t�ei�m�+nkz� �1�

in azimuthal and axial direction. Here one has f−m,−n= fm,n
with the overbar denoting complex conjugation. Order pa-
rameters are the moduli �A�, �B�, �C� and the time derivatives

�̇A, �̇B, �̇C of the phases of the dominant modes in the de-
composition �1� of, say, the radial velocity u at midgap u2,1
=A= �A�e−i�A, u2,−1=B= �B�e−i�B, and u0,2=C= �C�e−i�C. Here,*kontakt@alexander-pinter.de
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A and B are the amplitudes of the marginal L- and R-SPI
modes. When both are finite as, e.g., in the SW of the RIB
state their nonlinear coupling generates the m=0 C mode
below its threshold for linear growth: Pure m=0 stationary
Taylor vortices bifurcate out of the CCF only later on. Al-
though �C� itself remains small compared to �A�, �B� in the
RIB state its feedback on A, B triggers the Hopf bifurcation
of the O-CR-SPI: The oscillations of, say, �A� are driven by
bilinear mode couplings of BC as indicated in Fig. 1.

We also use the combined order parameters

S =
�A�2 + �B�2

2
, D =

�A�2 − �B�2

2
, � = �C + �B − �A − �

�2�

that are better suited to describe the bifurcation of the O-CR-
SPI with oscillating D�t� and ��t� out of the RIB state, D
=0=�.

Bifurcation sequence. The pure TW shown by circles in
Fig. 2 and the SW solution �A=B, C�0� marked by dia-
monds bifurcate at �=0 out of the unstructured CCF. Ini-
tially, the SPI is stable and the RIB is unstable. But then
there appears a stable cross-spiral �CR-SPI� solution �tri-
angles in Fig. 2�b�� which transfers stability from the SPI to
the RIB. The moduli and phase velocities of these three
structures are time independent. At �H in Fig. 2 the RIB lose
stability in a supercritical Hopf bifurcation to the modulated
state of O-CR-SPI. Increasing � further beyond the range
shown in Fig. 2 the O-CR-SPI loses stability at R2�−543 to
oscillating structures with azimuthal wave number M =1 that
are not discussed here.

Dynamics of the modulated SW. Figure 3 shows the tem-
poral variation of characteristic quantities of the O-CR-SPI
over one modulation period 	. Thick lines refer to � imme-
diately above onset �H. Thin lines show behavior at a larger
value �
 �arrow in Fig. 2� that is close to the end of the
existence interval of O-CR-SPI. The moduli �A�, �B� in Fig.

3�a� and the phase velocities �̇A, �̇B in Fig. 3�c� oscillate each

in counterphase around a respective common mean. Also �̇C
oscillates. Furthermore, �C� and the combined order param-
eter S show small amplitude oscillations with 2 times the
frequency of the other quantities. Close to onset all oscilla-
tions are harmonic with �C� and S being practically constant.

But at �
 the oscillations of �A�, �B� and �̇A, �̇B, � have

become quite anharmonic, whereas those of S, D, �C�, and �̇C
are still harmonic. The Fourier spectra in Figs. 4�a�–4�g� of

the temporal profiles shown by thin lines in Figs. 3�a�–3�g�
reflect this behavior at �
.

In the RIB state the phases are such that �C�t�+�B�t�
−�A�t�=�. But as a consequence of the Hopf bifurcation D
as well as � oscillate in the O-CR-SPI. The squares of their
oscillation amplitudes, D̃2 and �̃2, increase at onset linearly
with � with a subsequent quadratic correction, cf. Figs. 5�c�
and 5�d�. The monotonous decrease of the modulation period
	 is shown in Fig. 5�a�. Note that the modulation amplitudes
of S in Fig. 5�b� and also of �C� remain very small compared
to those of D and �.

Amplitude equations. The Hopf bifurcation behavior and
the dynamics close to the transition from RIB to O-CR-SPI
can be explained and described within a three-mode
amplitude-equation approach. It reveals �i� how the rotation-
ally symmetric C mode is generated nonlinearly via the in-
teraction of A and B, i.e., of the M =2 SPI constituents in the
RIB and �ii� how then C—after it has reached a critical size
beyond �H—induces amplitude oscillations in A and B.

Invariance under axial translation and reflection of the
Taylor-Couette system �5� restricts the form of the three
coupled amplitude equations to

0 2−2
m

0

2

−2

n
B

A
C

(a) (b)

C
A

B

FIG. 1. �Color online� �a� Dominant modes and their complex
conjugates in the Fourier space of Eq. �1�. �b� Bilinear coupling of
modes B and C �blue dashed arrows� that drive oscillations of mode
A �red solid arrow�.
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FIG. 2. �Color online� Bifurcation diagrams of SPI �red circles�,
RIB �blue diamonds�, CR-SPI �purple triangles�, and O-CR-SPI
�mangenta lines and crosses� obtained from numerical simulations
of the NSE versus � and R2. SPI and CR-SPI are displayed only in
�a� and �b�; the latter shows the blow-up of the rectangle near the
origin of �a�. Shown are the squared mode amplitudes �A�2 , �B�2 �a�,
�b� and phase velocities �̇A , �̇B �c� of the marginal modes and the
same for the nonlinear excited mode C in �d� and �e�. Filled �open�
symbols denote stable �unstable� solutions with time-independent
amplitudes. Crosses refer to temporal averages of the O-CR-SPI.
Upper �lower� line shows the maximum �minimum� of the oscilla-
tion range indicated by vertical lines. The arrow at �H �R2=−587�
marks the Hopf bifurcation of the modulated SWs. The second ar-
row at �=�
 �R2=−546� is inserted for later reference.
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Ȧ = AG��A�2, �B�2, �C�2� + i�BC , �3a�

Ḃ = BĜ��A�2, �B�2, �C�2� + i�AC̄ , �3b�

Ċ = CH��A�2, �B�2, �C�2� + �0AB̄ . �3c�

With Ĝ��A�2 , �B�2 , �C�2�=G��B�2 , �A�2 , �C�2� and

H��A�2 , �B�2 , �C�2�= H̄��B�2 , �A�2 , �C�2� the equations are

invariant under the operation �A ,B ,C�↔ �B ,A , C̄�, which
reflects the axial inversion symmetry z↔−z. The functions
G=G�+ iG� and H=H�+ iH� are complex. The superscripts
prime and double prime identify the real and imaginary
parts, respectively. The coupling constants � and �0 are real.

Since only invariance under translation and reflection
along one spatial direction has been used in deriving Eqs. �3�
our description of the phenomenon of a SW with oscillating
TW components in terms of Eqs. �3� potentially applies to all
bifurcating systems with O�2� symmetry in the center mani-
fold, which is quite common.

In the following we discard the coupling term �0AB̄. It is
small in our case and, more importantly, we checked that it is
not relevant for driving the Hopf oscillations. They are gen-
erated by the coupling terms in �3a� and �3b� as we shall
show in the next section.

The mechanism causing the Hopf bifurcation into the
modulated SW can be better isolated by rewriting the ampli-
tude equations �3� in terms of the combined order parameters
�2�,

Ṡ = 2�DG−� + SG+��, �Ċ� = �C�H�, �4a�

Ḋ = 2�SG−� + DG+�� − 2��C�S* sin � , �4b�

�̇ = 2G−� + 2�
�C�
S*

D cos � − H�, �4c�

where S*=S�1− �D /S�2	S. Here we defined G�

= �G� Ĝ� /2. Note that G+ and H� �G− and H�� are even
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FIG. 3. �Color online� Time variation of O-CR-SPI over one
modulation period 	. The left-hand column shows moduli and phase
velocities of A, B, and C. In �a� and �c� solid lines refer to A and
dashed ones to B. The right-hand column contains the order param-
eters S, D, and � �2�. Thick lines are modulation profiles close to
the Hopf threshold �H and thin lines are those at the larger �


identified by the second arrow in Fig. 2.
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FIG. 4. �Color online� Fourier spectra of the modulation profiles
shown by thin lines in Fig. 3 for �=�
 �cf. arrow in Fig. 2�. Note
that �C� and S oscillates with 2 times the frequency of the other
quantities and that the spectra of �C�, S, and D practically do not

contain higher harmonics. The spectra of �, D, and �̇C ��C� and S�
contain only peaks at �2l+1� /	 �2l /	� with l=0,1 ,2. . ..
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FIG. 5. �Color online� Bifurcation properties of RIB �blue dia-
monds� and O-CR-SPI �magenta lines and squares� obtained from
numerical solutions of the NSE as functions of � and R2: �a� Os-
cillation period 	 of the modulation, say, of the moduli �A� and �B� of
the O-CR-SPI, �b� S �thin lines delimit the oscillation range indi-

cated by vertical bars�, �c� and �d� squared oscillation amplitudes D̃

of D and �̃ of �, respectively.
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�odd� in D �14� as a result of the inversion symmetry. Hence,
Eqs. �4a� are even in D. This in turn explains that S and �C�
oscillate with 2 times the frequency of the other quantities in
Fig. 3. On the other hand, Eq. �4c� is odd in D and causes the
absence of a peak at 2 /	 in Fig. 4�g�.

We have determined the specific functions G and H for
our specific system via fits to the numerically obtained bifur-
cation branches of SPI, RIB, and CR-SPI in Fig. 2 and to the
pure Taylor vortex solution �not shown here� with A=0=B,
C�0, and one-half the spiral wavelength. This produces the
bifurcation behavior close to the Hopf threshold well. Note,
however, that the Hopf bifurcation is a universal phenom-
enon of systems like �3� and �4� that is not specific to the
Taylor-Couette system. This is most easily understood with
the help of the universal small-D expansion of �4� that results
from the symmetry properties.

Hopf bifurcation. For small D, i.e., close to the Hopf bi-
furcation threshold we can use the expansions

G+ = G+
�0� + O�D2�, G− = G−

�1�D + O�D3� , �5a�

H� = H��0� + O�D2�, H� = H��1�D + O�D3� . �5b�

Here the leading order terms G+
�0�, G−

�1�, H��0�, H��1� still de-
pend on S and �C�2. Inserting �5� into �4� and using the small-
ness of � yields a simplified model that is linear in D,

Ṡ = 2SG+�
�0�, �Ċ� = �C�H��0�, �6a�

Ḋ = 2�SG−�
�1� + G+�

�0��D − 2��C�S� , �6b�

�̇ = 
2G−�
�1� + 2�

�C�
S

− H��1��D . �6c�

It explains the Hopf bifurcation out of the RIB state and the
O-CR-SPI properties close to onset. For example, S and �C�
are virtually constant because they are decoupled from D and
� in the model equations �6�. Furthermore, Eq. �6c� shows
that � is enslaved by D and that the phase shift between
them is 	 /4 as to be seen in Fig. 3 close to �H. This justifies
the solution ansatz

D�t� = D̃ cos�Ht�, ��t� = �̃ sin�Ht� , �7�

where H is the Hopf frequency.
The latter is identified together with the bifurcation

threshold �H by a linear stability analysis of the RIB fixed
point D=0=�, S=SRIB���, C=CRIB��� for which G+�

�0�=0
according to Eq. �6a�. Thus, the linearized equations for
the stability-relevant deviations from this fixed point
read Ḋ=aD+b�, �̇=cD, with coefficients a=2SG−�

�1�,
b=−2��C�S, c=2G−�

�1�+2� �C�
S −H��1� to be taken at the RIB

fixed point. Consequently, the location of the zero in
a��� determines �H and the imaginary part of the eigenvalue
at �H, i.e., the Hopf frequency is then given by
H

2 =−bc��+h.o.t. �where h.o.t. stands for higher order
terms�, revealing that the coupling terms in
�3a� and �3b� cause the Hopf bifurcation. Furthermore,
a���=���−�H� with positive � to ensure decay of oscilla-
tions below �H and growth above it.

Conclusion. The bifurcation of a spiral vortex structure
with oscillating TW amplitudes out of an SW is shown to be
triggered by the coupling to a nonlinearly excited mode
when the latter exceeds a critical strength. Since this state, in
which the TW amplitudes oscillate in counterphase around a
common mean occurs quite robustly in a relatively wide pa-
rameter range, it should be easily accessible to experiments.

Our results have been obtained by full numerical simula-
tions and explained and confirmed by a coupled amplitude
equation model that captures the mode coupling between two
symmetry degenerate critical modes and a nonlinearly ex-
cited one. Our bifurcation scenario can occur in all systems
with an O�2� symmetric center manifold, arising, for ex-
ample, in systems with translation and inversion symmetry,
which is a quite general one. It has therefore the potential to
occur also in other structure-forming systems, say, in hydro-
dynamics, chemical reactions, or biological systems, etc.,
where any two symmetry degenerate basic modes A and B
couple similarly to a third one, C, that is nonlinearly excited
by them and that destroys the A=B state once C has reached
a critical size.
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